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Abstract 
 

This paper introduces a new generalization of the transmuted Lindley distribution, 

based on a new family of life time distribution by Mansour et al. (2015). We refer 

to the new distribution as transmuted Lindley distribution (NTL) distribution. The 

new model contains some of lifetime distributions as special cases such as 

exponentiated Lindley, transmuted Lindley and Lindley distributions. The 

properties of the new model are discussed and the maximum likelihood estimation 

is used to evaluate the parameters. Explicit expressions are derived for the 

moments and examine the order statistics. It will be shown that the analytical 

results are applicable to model real data. 

 

Keywords: transmutation; survival function; exponentiated exponential; order 

statistics; maximum likelihood estimation 

 

1. Introduction 
 

The quality of the procedures used in a statistical analysis depends heavily 

on the assumed probability model or distributions. Because of it, considerable 

effort has been expended in the development of large classes of standard 

probability distributions along with relevant statistical methodologies. However, 
there still remain many important problems where the real data does not follow any 
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of the classical or standard probability models. Since there is a clear need for 

extended forms of these distributions a significant progress has been made toward 

the generalization of some well known distributions and their successful 

application to problems in areas such as engineering, finance, economics and 

biomedical sciences, among others.                                                              

A lot of distributions have been made using cumulative distribution function 

(cdf)𝐺(𝑥), probability density function (pdf)𝑔(𝑥), or survival function  �̅�(𝑥) that 

one can rely on, as a baseline distribution, to introduce new models. The 

Exponentiated generalization is the first generalization allowing for non-

monotone hazard rates, including the bathtub shaped hazard rate. The cdf of the 

new distribution is defined by 𝐹(𝑥) = 𝐺∝(𝑥), where ∝> 0. The exponentiated 

exponential distribution has been introduced by Ahuja and Nash (1967), and 

further studied by Gupta and Kundu (1999). The first generalization allowing for 

nonmonotone hazard rates, including the bathtub shaped hazard rate, is the 

exponentiated Weibull (EW) distribution due to Mudholkar and Srivastava 

(1993), and Mudholkar et al. (1995).  

An interesting idea of generalizing a distribution, known in the literature by 

transmutation, is derived by using the Quadratic Rank Transmutation Map 

(QRTM) introduced by Shaw and Buckley (2009). Merovci (2013) introduced 

transmuted Lindley distribution. According to the transmutation generalization 

approach, the cdf satisfies the relationship  

 𝐹(𝑥) = (1 + 𝜆)𝐺(𝑥) − 𝜆[𝐺(𝑥)]2, 
. 

(1) 

where G(x) the cdf of the baseline distribution. 

Mansour et al. (2015) introduced new transmutation map approach to 

define a new model which Lindley distribution. The proposed modification 

generalizes the rank of the transmutation map by replacing the constant power by 

additional parameters. The following definition gives the mechanism of 

generating a new family of lifetime distributions building on a base model, that is, 

according to this modification. 

Definition 1 Let 𝐺(𝑥) be the cumulative distribution function (cdf) of a non-

negative absolutely continuous random variable, 𝐺(𝑥) be strictly increasing on its 

support, and 𝐺(0) = 0 define a new cdf, F(x), out of 𝐺(𝑥) as 

 𝐹(𝑥) = (1 + 𝜆)[𝐺(𝑥)]𝛿 − 𝜆[𝐺(𝑥)]𝛼, 𝑥 > 0, (2) 

 

where 𝛼, 𝛿 > 0 for  0 > 𝜆 > −1 and 𝛼 > 0 , (𝛼 + 𝛼/4) ≥ 𝛿 ≥ (𝛼/2) for  0 <
𝜆 <1. 

The rest of the article is organized as follows. In Section2, introduces the 

proposed new transmuted Lindley model according to the new class of 

distribution. In Section 3, we find the reliability function, hazard rate and 

cumulative hazard rate of the subject model. The Expansion for the pdf and the  
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cdf Functions is derived in Section 4. In section 5, The statistical properties 

include quantile functions, median ,  moments , and moment generating function 

are given,. In Section 6, order statistics are discussed. In Section 7, we introduce 

the method of likelihood estimation as point estimation and, give the equation 

used to estimate the parameters, using the maximum product spacing estimates 

and the least square estimates techniques. Finally, we fit the distribution to real 

data set to examine it.  

 

2.  A New Transmuted Lindley Distribution 
 

Definition 2.1 A random variable X is said to have the Lindley distribution 

with parameter θ if its probability density is defined as 

 
𝑓(𝑥) =

𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥, 𝑥 > 0, 𝜃 > 0. 

 

(3) 

The corresponding cumulative distribution function (cdf) is: 

 
𝐹(𝑥) = 1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥 , 𝑥 > 0, 𝜃 > 0. 

 

(4) 

Now using (2) and (4) we have the cdf of a new transmuted Lindley 

distribution 

 
𝐹(𝑥) = (1 + 𝜆) [1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛿

− 𝜆 [1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛼

, 𝑥 > 0, 
 

(5) 
 

Hence, the pdf of new transmuted Lindley distribution is 

 

𝑓(𝑥) =
𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥 ((1 + 𝜆)𝛿 [1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛿−1

− 𝜆𝛼 [1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛼−1

), 

 

 

 

 

(6) 

where 𝜃, 𝛼 , 𝛿 > 0,   for  0 > 𝜆 > −1 and, 

𝜃, 𝛼 > 0,   (𝛼 + 𝛼/4) ≥ 𝛿 ≥ (𝛼/2)  for   0 < 𝜆 < 1.   

We present special cases of the new transmuted Lindley distribution (NTLD) as 

follows: 

Transmuted Lindley distribution: for   𝛼 = 2 𝑎𝑛𝑑 𝛿 = 1  , the distribution 

function (5) becomes 

 
𝐹(𝑥) = (1 + 𝜆) [1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥] − 𝜆 [1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

2

, 𝑥 > 0, 
 

(7) 

which is the distribution function of the transmuted Lindley distribution. 
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Transmuted exponentiated Lindley distribution: for   𝛿 =
𝛼

2
  , the distribution 

function (5) becomes 

 

𝐹(𝑥) = (1 + 𝜆) [1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛼
2

− 𝜆 [1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛼

, 𝑥 > 0, 
 

(8) 

which is the distribution function of the transmuted exponentiated Lindley 

distribution. 

Exponentiated Lindley distribution: for   𝜆 = 0  , the distribution function (5) 

becomes 

 
𝐹(𝑥) = [1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛿

, 𝑥 > 0, 
 

(9) 

 

which is the distribution function of the exponentiated Lindley distribution. 

Lindley distribution: for   𝜆 = 0, 𝛿 = 1 , the distribution function (5) becomes 

 
𝐹(𝑥) = [1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥] , 𝑥 > 0, 

 

(10) 

 

which is the distribution function of the Lindley distribution. 

Figures 1 and 2 illustrates some of the possible shapes of the pdf and cdf of the 

NTL distribution for selected values of the parameters 𝜆, 𝜃, 𝛿 𝑎𝑛𝑑 𝛼respectively 

 

 

 

Figure 1: Probability density function of the NTL distribution. 
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Figure 2: Distributionf of the NTL distribution. 

 

3. Reliability Analysis 
 

 The characteristics in reliability analysis which are the reliability function 

(RF), the hazard rate function (HF) and the cumulative hazard rate function (CHF) 

for the NTL are introduces in this section. 

 

3.1 Reliability Function  

 

The reliability function (RF) also known as the survival function, which is 

the probability of an item not failing prior to some time t, is defined by R(x) =
1 − F(x). The reliability function of the new transmuted Lindley distribution 

(NTLD) denoted by RNTL(𝜆, 𝜃, 𝛿, 𝛼), can be a useful characterization of life time 

data analysis. It can be defined as, 

 

 RNTL(𝜆, 𝜃, 𝛿, 𝛼) = 1 − FNTL(𝜆, 𝜃, 𝛿, 𝛼),  

the survival function of is given by, 

 
RNTL(𝑥, 𝜆, 𝜃, 𝛿, 𝛼) = 1 − [(1 + 𝜆) [1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛿

− 𝜆 [1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛼

]. 
 

(11) 
 

 

Figure 3 illustrates the pattern of the called the new transmuted Lindley 

distribution reliability function with different choices of parameters 𝜆, 𝜃, 𝛿 𝑎𝑛𝑑 𝛼. 
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Figure 3: Reliability function of the NTL distribution. 

 

3.2 Hazard Rate Function 

  

The other characteristic of interest of a random variable is the hazard rate 

function (HF). the new transmuted Lindley distribution also known as 

instantaneous failure rate denoted by hNTL (x), is an important quantity 

characterizing life phenomenon. It can be loosely interpreted as the conditional 

probability of failure, given it has survived to the time t. The HF of the NTL is 

defined by hNTL(x, , 𝜆, 𝜃, 𝛿, 𝛼) = fNTL(x, , 𝜆, 𝜃, 𝛿, 𝛼)/RNTL(x, , 𝜆, 𝜃, 𝛿, 𝛼), 

Figure 4 illustrates some of the possible shapes of the hazard rate function 

of the new transmuted Lindley distribution for different values of the 

parameters λ, β, a, b, δand α. 

 

 

Figure 4: Hazard rate of the NTL distribution. 
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3.3 Cumulative Hazard Rate Function  

 The Cumulative hazard function (CHF) of the new transmuted Lindley 

distribution, denoted by HNTL (x, 𝜆, 𝜃, 𝛿, 𝛼), is defined as HNTL(x, 𝜆, 𝜃, 𝛿, 𝛼) =

∫
x

0
hNTL(x, 𝜆, 𝜃, 𝛿, 𝛼)dx = −lnRNTL(x, 𝜆, 𝜃, 𝛿, 𝛼), 

HNTL(𝑥, 𝜆, 𝜃, 𝛿, 𝛼) = − ln(1 − [(1 + 𝜆) [1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛿

− 𝜆 [1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝛼

]) . 
 

(12) 

 

 

4. Expansion for the pdf and the cdf Functions 
 

 In this section we introduced another expression for the pdf and the cdf 

functions using. The Maclaurin expansion to simplifying the pdf and the cdf 

forms. 

4.1  Expansion for the pdf Function 

From equation (6) and using the expansions 

 
(1 − z)k = ∑

(−1)jΓ(k + 1)

Γ(k − j + 1)j!
zj

∞

j=0

. 

Which holds for |z| < 1 and k > 0. 

 

(13) 

and 

(𝑎 − 𝑏)𝑘 = ∑(
𝑘

𝑗
) (−1)𝑗𝑏𝑗𝑎𝑘−𝑗 .

𝑘

𝑗=0

 

 

(14) 

 

Using (14) and applying it to (6), the pdf of the NTL model can be written as: 

 
 

𝑓(𝑥) =
𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥 ∑(−1)𝑖

1

𝑖=0

𝜆𝑖𝛼𝑖 [1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥]

𝑖(𝛼−1)+(𝛿−1)(1−𝑖)

× (1 + 𝜆)1−𝑖𝛿1−𝑖 , 

 

 

 

(15) 
 

using (14) and applying it to (15), the pdf of the NTL model can be written as: 

 
 

𝑓(𝑥) =
𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥 ∑∑

(−1)𝑖+𝑗Γ(𝑖(𝛼 − 1) + (𝛿 − 1)(1 − 𝑖) + 1)

𝑗! Γ(𝑖(𝛼 − 1) + (𝛿 − 1)(1 − 𝑖) − 𝑗 + 1)

∞

𝑗=0

1

𝑖=0

× 𝜆𝑖𝛼𝑖(1

+ 𝜆)1−𝑖𝛿1−𝑖  (
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
)

𝑗

  𝑒−𝜃𝑗𝑥, 

 

 

 

(16) 

 

the pdf of the NTL model can be written as: 

𝑓(𝑥) =
𝜃2

𝜃 + 1
∑∑ ∑

(−1)𝑖+𝑗Γ(𝑖(𝛼 − 1) + (𝛿 − 1)(1 − 𝑖) + 1)𝜃𝑘

𝑘! Γ(𝑗 − 𝑘 + 1)Γ(𝑖(𝛼 − 1) + (𝛿 − 1)(1 − 𝑖) − 𝑗 + 1)(𝜃 + 1)𝑗

𝑗

𝑘=0

∞

𝑗=0

1

𝑖=0

× (× 𝜆𝑖𝛼𝑖(1 + 𝜆)1−𝑖𝛿1−𝑖  (1 + 𝑥)𝑘+1  𝑒−𝜃𝑥(𝑗+1)), 

 
 
 

(17) 
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𝑓(𝑥) =
𝜃2

𝜃 + 1
∑∑ ∑ ∑

(−1)𝑖+𝑗Γ(𝑖(𝛼 − 1) + (𝛿 − 1)(1 − 𝑖) + 1)𝑘𝜃𝑘

𝑙! Γ(𝑘 − 𝑙 + 2)Γ(𝑗 − 𝑘 + 1)Γ(𝑖(𝛼 − 1) + (𝛿 − 1)(1 − 𝑖) − 𝑗 + 1)(𝜃 + 1)𝑗

𝑘+1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

1

𝑖=0

× (𝜆𝑖𝛼𝑖(1 + 𝜆)1−𝑖𝛿1−𝑖  𝑥𝑙  𝑒−𝜃𝑥(𝑗+1)), 

 
 

(18) 

the pdf of NTL distribution can then be represented as: 

 

𝑓(𝑥) = ∑∑ ∑ ∑ 𝐴𝑖:𝑙

𝑘+1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

1

𝑖=0

× ( 𝑥𝑙  𝑒−𝜃𝑥(𝑗+1)), 
 

(19) 

where 𝐴𝑖:𝑙 is a constant term given by, 

 

𝐴𝑖:𝑙 =
𝜃2

𝜃 + 1
×

(−1)𝑖+𝑗Γ(𝑖(𝛼 − 1) + (𝛿 − 1)(1 − 𝑖) + 1)𝑘𝜃𝑘𝜆𝑖𝛼𝑖(1 + 𝜆)1−𝑖𝛿1−𝑖 

𝑙! Γ(𝑘 − 𝑙 + 2)Γ(𝑗 − 𝑘 + 1)Γ(𝑖(𝛼 − 1) + (𝛿 − 1)(1 − 𝑖) − 𝑗 + 1)(𝜃 + 1)𝑗
. 

 

 

4.2 Expansion for the cdf Function 

 Using expansion (13) and (14) to Equation (5) ,then the cdf function of the 

NTL  can be written as: 

 

𝐹(𝑥) = ∑ ∑ ∑∑ 𝐵𝑖:𝑙𝑥
𝑙+𝑚,

𝑘

𝑙=0

𝑗

𝑘=0

∞

𝑗,𝑚=0

1

𝑖=0

 

 

(20) 

 

 

where 𝐵𝑖:𝑙 is a constant term given by: 

 

 
𝐵𝑖:𝑙 =

(−1)𝑖+𝑗+𝑚𝜆𝑖(1 − 𝜆)1−𝑖
Γ(𝛼𝑖 + 𝛿(1 − 𝑖) + 1)𝜃𝑘+𝑚𝑗𝑚

𝑙!𝑚! Γ(𝛼𝑖 + 𝛿(1 − 𝑖) − 𝑗 + 1)Γ(𝑗 − 𝑘 + 1)Γ(𝑘 − 𝑙 + 1)(1 + 𝜃)𝑗
. 

 

 

 

 

5. Statistical properties 
 

In this section we discuss the most important statistical properties of the NTL 

distribution. 

5.1 Quantile function 

 

The quantile function is obtained by inverting the cumulative distribution (20), 

where the 𝑝-th quantile 𝑥𝑝 of the NTL model is the real solution of the following 

equation: 

∑ ∑ ∑ ∑𝐵𝑖:𝑙𝑥𝑝
𝑙+𝑚 − 𝑝 = 0.

𝑘

𝑙=0

𝑗

𝑘=0

∞

𝑗,𝑚=0

1

𝑖=0

 

 

An expansion for the median 𝑀 follows by taking 𝑝 = 0.5. 
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5.2 Moments 

 

The rthnon-central moments or (moments about the origin) of the NTL under 

using equation (19) is given by: 

μ
r
′ = E(𝑋r) = ∫ 𝑋r𝑓(x)dx,

∞

𝟎

 

μ
r
′ = ∫ 𝑋r [∑∑∑∑ 𝐴𝑖:𝑙

𝑘+1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

1

𝑖=0

( 𝑥𝑙  𝑒−𝜃𝑥(𝑗+1))] dx

∞

𝟎

, 

 

then, 

 

μ
r
′ = ∑∑∑∑

𝐴𝑖:𝑙Γ(𝑟 + 𝑙 + 1)

(𝜃(𝑗 + 1))𝑟+𝑙+1

𝑘+1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

1

𝑖=0

. 

 

 

(21) 

In particular, when r = 1, Eq. (21) yields the mean of the NTL distribution,𝜇 as 

𝜇 = ∑∑∑∑
𝐴𝑖:𝑙Γ(𝑙 + 2)

(𝜃(𝑗 + 1))𝑙+2

𝑘+1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

1

𝑖=0

. 

The nthcentral moments or (moments about the mean) can be obtained easily 

from the rth non-central moments throw the relation: 

mu = E(X − μ)n = ∑(−μ)n−rE(Xr).

n

r=0

 

Then the nthcentral moments of the NTL is given by: 

mu = E(X − μ)n = ∑(−μ)n−r ∑∑∑∑
𝐴𝑖:𝑙Γ(𝑟 + 𝑙 + 1)

(𝜃(𝑗 + 1))𝑟+𝑙+1

𝑘+1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

1

𝑖=0

.

n

r=0

 

5.3 The Moment Generating Function 

The moment generating function, 𝑀𝑥(𝑡), can be easily obtained from the rth non-

central moment through the relation  

𝑀𝑥(𝑡) = ∫ etx𝑓(x)dx,

∞

𝟎
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𝑀𝑥(𝑡) = ∫ etx [∑∑∑∑ 𝐴𝑖:𝑙

𝑘+1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

1

𝑖=0

( 𝑥𝑙  𝑒−𝜃𝑥(𝑗+1))] dx,

∞

𝟎

 

𝑀𝑥(𝑡) =Then, the moment generating function of the NTL distribution is given 

by, 

𝑀𝑥(𝑡) = ∑∑∑∑
𝐴𝑖:𝑙Γ(𝑙 + 1)

(𝜃(𝑗 + 1) + 𝑡)𝑙+1

𝑘+1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

1

𝑖=0

. 

6. Order Statistics 
 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 denote 𝑛-independent random variables from a 

distribution function 𝐹𝑋(𝑥) with pdf 𝑓𝑋(𝑥). Let 𝑋(1), 𝑋(2), … , 𝑋(𝑛) be the 

ordered sample arrangement. The pdf of 𝑋(𝑗) is given by: 

 

𝑓𝑋(𝑗)
(𝑥) =

𝑛!

(𝑗−1)! (𝑛−𝑗)!
𝑓𝑋(𝑥)[𝐹𝑋(𝑥)]𝑗−1. [1 − 𝐹𝑋(𝑥)]𝑛−𝑗,    𝑗 = 1,2, … , 𝑛. 

Then from (5) and (6) the pdf of 𝑋(𝑗) is given by: 
 

𝑓(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)!

𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥 ((1 + 𝜆)𝛿[Ι(𝑥, 𝜃)]𝛿−1 − 𝜆𝛼[Ι(𝑥, 𝜃)]𝛼−1)

× [(1 + 𝜆)[Ι(𝑥, 𝜃)]𝛿 − 𝜆[Ι(𝑥, 𝜃)]𝛼]
𝑗−1

× [1 − ((1 + 𝜆)[Ι(𝑥, 𝜃)]𝛿 − 𝜆[Ι(𝑥, 𝜃)]𝛼)]
𝑛−𝑗

. 

Where Ι(𝑥, 𝜃) = 1 −
𝜃+1+𝜃𝑥

𝜃+1
𝑒−𝜃𝑥.  

 

Therefore, the pdfs of the smallest and the largest order statistic are respectively 

given by: 

𝑓𝑋(1)
(𝑥) = 𝑛

𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥 ((1 + 𝜆)𝛿[Ι(𝑥, 𝜃)]𝛿−1 − 𝜆𝛼[Ι(𝑥, 𝜃)]𝛼−1)

× [1 − ((1 + 𝜆)[Ι(𝑥, 𝜃)]𝛿 − 𝜆[Ι(𝑥, 𝜃)]𝛼)]
𝑛−1

, 

and 

𝑓𝑋(𝑛)
(𝑥) = 𝑛

𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥 ((1 + 𝜆)𝛿[Ι(𝑥, 𝜃)]𝛿−1 − 𝜆𝛼[Ι(𝑥, 𝜃)]𝛼−1)

× [(1 + 𝜆)[Ι(𝑥, 𝜃)]𝛿 − 𝜆[Ι(𝑥, 𝜃)]𝛼]
𝑛−1

. 

7. Estimation of the Parameters  
 

In this section we introduce the method of likelihood to estimate the parameters 

involved, then gives the equation used to estimate the parameters using the 

maximum product spacing estimates and the least square estimates techniques. 
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7.1 Maximum Likelihood Estimation 

The maximum likelihood estimators (MLEs) for the parameters of the new 

transmuted Lindely distribution NTL  (𝜆, 𝜃, 𝛼, 𝛿) is discussed in this section. 

Consider the random sample 𝑥1, 𝑥2, . . . , 𝑥𝑛 of size 𝑛 from NTL(𝜆, 𝜃, 𝛼, 𝛿)  with 

probability density function in (6), then the likelihood function can be expressed 

as follows 

L(𝑥1, 𝑥2, . . . , 𝑥𝑛 ,𝜆,𝜃, 𝛼, 𝛿) = ∏

𝑖=1

𝑛

𝑓NTL(𝑥𝑖 ,𝜆,𝜃, 𝛼, 𝛿), 

L(𝑥1, 𝑥2, . . . , 𝑥𝑛 , 𝜆, 𝜃, 𝛼, 𝛿)

= ∏

𝑖=1

𝑛
𝜃2

𝜃 + 1
(1 + 𝑥𝑖)𝑒

−𝜃𝑥𝑖 ((1 + 𝜆)𝛿[Ι(𝑥𝑖, 𝜃)]𝛿−1 − 𝜆𝛼[Ι(𝑥𝑖, 𝜃)]𝛼−1) 

 

Hence, the log-likelihood function   𝜏= ln L becomes, 

𝜏 = 2n ln 𝜃 − 𝑛 ln(𝜃 + 1) + ∑ln(1 + 𝑥𝑖) − ∑𝜃𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=

+ ∑ ln[(1 + 𝜆)𝛿[Ι(𝑥𝑖 , 𝜃)]𝛿−1 − 𝜆𝛼[Ι(𝑥𝑖 , 𝜃)]𝛼−1]

𝑛

𝑖=1

 

 

 

 

 

(22) 

Differentiating Equation (22) with respect to 𝜆, 𝜃, δ and 𝛼 then equating it 

to zero, we obtain the MLEs of 𝜆, 𝜃, δ and 𝛼   as follows, 

𝜕𝜏

𝜕𝜆
= ∑

𝛿[Ι(𝑥𝑖, 𝜃)]𝛿−1 − 𝛼[Ι(𝑥𝑖, 𝜃)]𝛼−1

(1 + 𝜆)𝛿[Ι(𝑥𝑖, 𝜃)]𝛿−1 − 𝜆𝛼[Ι(𝑥𝑖, 𝜃)]𝛼−1
,

𝑛

𝑖=1

 

 

 

(23) 

𝜕𝜏

𝜕𝜃
=

2𝑛

𝜃
−

𝑛

𝜃 + 1
− ∑𝑥𝑖

𝑛

𝑖=1

+ ∑ 𝑥𝑖𝑒
−𝜃𝑥𝑖 [(1 +

𝜃𝑥𝑖

𝜃 + 1
) − (

1

(𝜃 + 1)2
)]

𝑛

𝑖=1

×
(𝛿(𝛿 − 1)(1 + 𝜆)[Ι(𝑥𝑖 , 𝜃)]𝛿−2 − 𝛼(𝛼 − 1)𝜆[Ι(𝑥𝑖 , 𝜃)]𝛼−2)

(1 + 𝜆)𝛿[Ι(𝑥𝑖 , 𝜃)]𝛿−1 − 𝜆𝛼[Ι(𝑥𝑖 , 𝜃)]𝛼−1
, 

 

 

 

 

 

 

 

 

(24) 

𝜕𝜏

𝜕𝛿
= ∑

(1 + 𝜆)[Ι(𝑥𝑖, 𝜃)]𝛿−1(𝛿 ln(Ι(𝑥𝑖, 𝜃)) + 1)

(1 + 𝜆)𝛿[Ι(𝑥𝑖, 𝜃)]𝛿−1 − 𝜆𝛼[Ι(𝑥𝑖, 𝜃)]𝛼−1
,

𝑛

𝑖=1

 

 

 

(25) 

and 

𝜕𝜏

𝜕𝛼
= ∑

−𝜆[Ι(𝑥𝑖, 𝜃)]𝛼−1(𝛼 ln(Ι(𝑥𝑖, 𝜃)) + 1)

(1 + 𝜆)𝛿[Ι(𝑥𝑖, 𝜃)]𝛿−1 − 𝜆𝛼[Ι(𝑥𝑖, 𝜃)]𝛼−1
,

𝑛

𝑖=1

 

 

 

 

 

(26) 
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We can find the estimates of the unknown parameters by maximum 

likelihood method by setting these above nonlinear system of Equations (23) - 

(26) to zero and solve them simultaneously. These solutions will yield the ML 

estimators 𝜆,̂ 𝜃,̂ 𝛿 and �̂�. For the four parameters new transmuted Lindely 

distribution NTL(𝑥, 𝜆, 𝜃, 𝛼, 𝛿)𝑝𝑑𝑓  all the second order derivatives exist. Thus we 

have the inverse dispersion matrix is given by 

 

(

�̂�
𝜃
𝛿
�̂�

)~𝑁

[
 
 
 
 

(

𝜆
𝜃
δ

𝛼

) ,

(

 
 

�̂�11 �̂�12 �̂�13 �̂�14

�̂�21 �̂�22 �̂�23 �̂�24

�̂�31 �̂�32 �̂�33 �̂�34

�̂�41 �̂�42 �̂�43 �̂�44)

 
 

]
 
 
 
 

, 

                   𝑉−1 = −𝐸 (

𝑉11 𝑉12 𝑉13 𝑉14

𝑉21 𝑉22 𝑉23 𝑉24

𝑉31 𝑉32 𝑉33 𝑉34

𝑉41 𝑉42 𝑉43 𝑉44

).                                    (27) 

Equation (27) is the variance covariance matrix of the NTL(𝑥, 𝜆, 𝜃, 𝛼, 𝛿) 

where 

𝑉11 =
∂2Ψ

∂𝜆2    𝑉12 =
∂2Ψ

∂𝜆 ∂𝜃
   𝑉13 =

∂2Ψ

∂𝜆 ∂𝛿
   𝑉14 =

∂2Ψ

∂𝜆 ∂𝛼
  

 𝑉22 =
∂2Ψ

∂𝜃2       𝑉23 =
∂2Ψ

∂𝜃 ∂𝛿
     𝑉24 =

∂2Ψ

∂𝜃 ∂𝛼
  

 𝑉33 =
∂2Ψ

∂𝛿2
      𝑉34 =

∂2Ψ

∂𝛿 ∂𝛼
  

 𝑉44 =
∂2Ψ

∂𝛿2
 

By solving this inverse dispersion matrix, these solutions will yield the 

asymptotic variance and covariances of these MLEs for 𝜆,̂ 𝜃,̂ 𝛿 and �̂�. 

Approximate 100(1 − 𝜙)% confidence intervals for 𝜆, 𝜃, 𝛿 and 𝛼  can be 

determined as: 

 �̂� ± 𝑍𝜙

2

√�̂�11, 𝜃 ± 𝑍𝜙

2

√�̂�22, 𝛿 ± 𝑍𝜙

2

√�̂�33 and �̂� ± 𝑍𝜙

2

√�̂�44,          

 

where 𝑍𝜙

2

 is the upper 𝜙th percentile of the standard normal distribution. 
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7.2 Maximum product spacing estimates 

 

The maximum product spacing (MPS) method has been proposed by Cheng 

and Amin (1983). This method is based on an idea that the differences (Spacing) 

of the consecutive points should be identically distributed. The geometric mean of 

the differences is given as 

 

𝐺𝑀 = √∏𝐷𝑖

𝑛+1

𝑖=1

𝑛+1

, (28) 

where, the difference 𝐷𝑖 is defined as 

 

𝐷𝑖 = ∫ 𝑓(𝑥, 𝜆, 𝜃, 𝛿, α)𝑑𝑥

𝑥(𝑖)

𝑥(𝑖−1)

;     𝑖 = 1,2, … , 𝑛 + 1,    (29) 

where, 𝐹(𝑥(0), 𝜆, 𝜃, δ, 𝛼) = 0 and 𝐹(𝑥(𝑛+1), 𝜆, 𝜃, δ, 𝛼) = 0. The MPS estimators 

�̂�𝑃𝑆, 𝜃𝑃𝑆,  �̂�𝑃𝑆 and 𝛿𝑃𝑆 of 𝜆, 𝜃, 𝛼 and 𝛿 are obtained by maximizing the geometric 

mean (GM) of the differences. Substituting pdf of NTL distribution in (29) and 

taking logarithm of the above expression, we will have 

 

log 𝐺𝑀 =
1

𝑛 + 1
∑ log[𝐹(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) − 𝐹(𝑥(𝑖−1), 𝜆, 𝜃, δ, 𝛼)]

𝑛+1

𝑖=1

. (30) 

 

The MPS estimators �̂�𝑃𝑆, 𝜃𝑃𝑆,  �̂�𝑃𝑆 and  �̂�𝑃𝑆 of 𝜆, 𝜃, 𝛿 and 𝛼 can be obtained 

as the simultaneous solution of the following non-linear equations: 

 

𝜕 𝑙𝑜𝑔 𝐺𝑀

𝜕𝜆
=

1

𝑛 + 1
∑ [

𝐹𝜆
′(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) − 𝐹𝜆

′(𝑥(𝑖−1), 𝜆, 𝜃, δ, 𝛼)

𝐹(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) − 𝐹(𝑥(𝑖−1), 𝜆, 𝜃, δ, 𝛼)
]

𝑛+1

𝑖=1

= 0, 

𝜕 𝑙𝑜𝑔 𝐺𝑀

𝜕𝜃
=

1

𝑛 + 1
∑ [

𝐹𝜃
′ (𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) − 𝐹𝜃

′ (𝑥(𝑖−1), 𝜆, 𝜃, δ, 𝛼)

𝐹(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) − 𝐹(𝑥(𝑖−1), 𝜆, 𝜃, δ, 𝛼)
]

𝑛+1

𝑖=1

= 0, 

𝜕 𝑙𝑜𝑔 𝐺𝑀

𝜕𝛿
=

1

𝑛 + 1
∑ [

𝐹𝛿
′ (𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) − 𝐹𝛿

′ (𝑥(𝑖−1), 𝜆, 𝜃, δ, 𝛼)

𝐹(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) − 𝐹(𝑥(𝑖−1), 𝜆, 𝜃, δ, 𝛼)
]

𝑛+1

𝑖=1

= 0, 

and 

𝜕 𝑙𝑜𝑔 𝐺𝑀

𝜕𝛼
=

1

𝑛 + 1
∑ [

𝐹𝛼
′ (𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) − 𝐹𝛼

′ (𝑥(𝑖−1), 𝜆, 𝜃, δ, 𝛼)

𝐹(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) − 𝐹(𝑥(𝑖−1), 𝜆, 𝜃, δ, 𝛼)
]

𝑛+1

𝑖=1

= 0. 
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7.3 Least square estimates 

 

Let 𝑥(1), 𝑥(2), … , 𝑥(𝑛) be the ordered sample of size 𝑛 drawn the NTL 

distribution. Then, the expectation of the empirical cumulative distribution 

function is defined as 

 
𝐸[𝐹(𝑋(𝑖))] =

𝑖

𝑛 + 1
;    𝑖 = 1,2, … , 𝑛. (31) 

The least square estimates  �̂�𝐿𝑆, 𝜃𝐿𝑆,  �̂�𝐿𝑆 and  �̂�𝐿𝑆 of  𝜆, 𝜃, 𝛿 and 𝛼are obtained 

by minimizing 

𝑍(𝜆, 𝜃, δ, 𝛼) = ∑[𝐹(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) −
𝑖

𝑛 + 1
]
2𝑛

𝑖=1

. 

Therefore, �̂�𝐿𝑆, 𝜃𝐿𝑆,  �̂�𝐿𝑆 and  �̂�𝐿𝑆 of  𝜆, 𝜃, 𝛿 and 𝛼  can be obtained as the 

solution of the following system of equations: 

𝜕𝑍(𝜆, 𝜃, δ, 𝛼)

𝜕𝜆
= ∑𝐹𝜆

′(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) (𝐹(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) −
𝑖

𝑛 + 1
)

𝑛

𝑖=1

= 0, 

𝜕𝑍(𝜆, 𝜃, δ, 𝛼)

𝜕𝜃
= ∑𝐹𝜃

′ (𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) (𝐹(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) −
𝑖

𝑛 + 1
)

𝑛

𝑖=1

= 0, 

𝜕𝑍(𝜆, 𝜃, δ, 𝛼)

𝜕𝛿
= ∑𝐹𝛿

′ (𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) (𝐹(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) −
𝑖

𝑛 + 1
)

𝑛

𝑖=1

= 0, 

and 

𝜕𝑍(𝜆, 𝜃, δ, 𝛼)

𝜕𝛼
= ∑𝐹𝛼

′ (𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) (𝐹(𝑥(𝑖), 𝜆, 𝜃, δ, 𝛼) −
𝑖

𝑛 + 1
)

𝑛

𝑖=1

= 0, 

These non-linear can be routinely solved using Newton’s method or fixed 

point iteration techniques. The subroutines to solve non-linear optimization 

problem are available in R, software namely optim( ), nlm( ) and bbmle( ) etc. We 

used nlm ( ) package for optimizing (22). 

 

8. Application 
 

In this section, we use a real data set to show that the new transmuted 

Lindley distribution can be a better model than one based on the Lindley 

distribution. The data set represents an uncensored data set corresponding to 

remission times (in months) of a random sample of 128 bladder cancer patients 

reported in Merovci (2013). Some summary statistics for the data are as follows: 

Min 1st Qu Median Mean 3rd Qu Max. 

0.080 3.348 6.395 9.366 11.840      79.05 
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In order to compare the two distribution models, we consider criteria like KS 

(Kolmogorov Smirnov),−2ℒ, AIC (Akaike information criterion), and AICC 

(corrected Akaike information criterion) for the data set. The better distribution 

corresponds to smaller KS, −2ℒ, AIC and AICC values: 

AIC = −2ℒ + 2k, 
and 

AICC = −2ℒ + (
2kn

n − k − 1
), 

where ℒ denotes the log-likelihood function evaluated at the maximum likelihood 

estimates, k is the number of parameters, and n is the sample size. 

Also, for calculating the values of KS we use the sample estimates of , λ, θ , α 

and δ. Table 1 shows the parameter estimation based on the maximum likelihood 

and least square estimation, and gives the values of the criteria AIC, AICC and 

KS test. The values in Table 1 indicate that the NTL distribution is a strong 

competitor to other distributions used here for fitting data. 

 
Table 1. MLEs the measures AIC, AICC and KS test to data for the models. 

Model 
Parameter 

Estimates 

Standard 

Error 
−𝟐LL AIC CAIC 

KS 

New  

Transmuted 

Lindley 

𝝀 = −𝟎. 𝟎𝟑𝟓𝟏 0.01989 412.854 833.7082 834.0334 0.060528 

𝜽 = 𝟎. 𝟐𝟎𝟒𝟑𝟖 0.0229 

𝜹 = 𝟎. 𝟖𝟓𝟗𝟓𝟎 0.11557 

𝜶 = 𝟑𝟖𝟎. 𝟒𝟕𝟖 332.62 

Transmuted 

Lindley 

𝝀 =  𝟎. 𝟔𝟏𝟔𝟖𝟕 0.1688 415.155 834.3101 834.4061 0.226523 

𝜽 =  𝟎. 𝟏𝟓𝟓𝟕 0.0150 

Exponentiated 

Lindley 
𝜶 = 𝟎.𝟏𝟔𝟒𝟖 0.01664 416.285 836.5719 836.6679 0.092791 

𝜽 =  𝟎. 𝟕𝟑𝟑 0.0912 

Lindley 𝜽 = 𝟎. 𝟏𝟗𝟔𝟎 0.01234 419.529 841.0598 841.0916 0.116398 

Weighted 

Lindley 
𝜶 = 𝟎.𝟏𝟓𝟗𝟒𝟓 0.0172 416.442 836.8845 836.9805 0.092567 

𝜽 = 𝟎. 𝟔𝟖𝟐𝟕 0.1115 

Modified 

Weibull 

𝜽 = 𝟔. 𝟐𝟔𝟕𝟓 3.16122 413.969 833.9393 834.1329 0.073875 

𝜹 = 𝟔. 𝟑𝟓𝟓𝟏 3.1869 

𝜶 = 𝟏.𝟎𝟎𝟏 0.0017 

 

 
 

Figure 5: Estimated densities of data set. 
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Figure 6: Empirical, fitted NTL, Transmuted Lindely, Exponentiated 

Lindely, Lindely, weighted Lindely, and Modified Weibull distributions of 

data set. 

 

 
 

Figure 7: Probability plots for the fits NTL, Transmuted Lindely, 

Exponentiated Lindely, Lindely, weighted Lindely, and Modified Weibull 

distributions of data set. 

 

9. Simulation algorithms 
 

In this section we give an algorithm, using R software, to simulate data from 

the NTL model. 
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9.1 Inverse CDF method 
Since the probability integral transformation cannot be applied explicitly, we, 

therefore need to follow the following steps for generating a sample of size n from 

NTL (𝜆, 𝜃, 𝛿, 𝛼): 

Step 1. Set 𝑛, 𝜆, 𝜃, 𝛿, 𝛼 and initial value 𝑥0. 

Step 2. Generate 𝑈 ∼Uniform(0,1). 

Step 3. Update 𝑥0 by using the Newton's formula. 

𝑥∗ = 𝑥0 − 𝑅(𝑥0, 𝛩), 

where, 𝑅(𝑥0, 𝛩) =
𝐹𝑋(𝑥0,𝛩)−𝑈

𝑓𝑋(𝑥0,𝛩)
, 𝐹𝑋(. ) and 𝑓𝑋(. ) are cdf and pdf of 

NTL distribution, respectively. 

Step 4. If |𝑥0 − 𝑥∗| ≤ 𝜖, (very small, 휀 > 0 tolerance limit), then store 𝑥 =
𝑥∗ as a sample from NTL distribution. 

Step 5. If |𝑥0 − 𝑥∗| > 𝜖, then, set 𝑥0 = 𝑥∗ and go to step 3. 

Step 6. Repeat steps 3-5, 𝑛 times for 𝑥1, 𝑥2, … , 𝑥𝑛 respectively. 

 

9.2 Inverse CDF method 
This subsection explores the behaviors of the proposed estimators in terms of 

their mean square error on the basis of simulated samples from pdf of NTL with 

varying sample sizes. We take𝜆 = −0.55, 𝜃 = 1, 𝛼 = 2arbitrarily and𝑛 =
10(10)100. The algorithms are coded in R, and the algorithm given in 9.1 has 

been used for simulation purposes. We calculate MLE estimators of 𝜆, 𝜃, 𝛿 and 𝛼 

based on each generated sample. This simulation is repeated 1000 of times, and 

average estimates with corresponding mean square errors are computed and 

reported in Table 2. 

 
Table 2. Estimates and mean square errors (in 2-nd row of each cell) of the proposed 

estimators with varying sample size. 

n MLE 
𝝀 𝜃 𝜹 𝜶 

10 
-0.5344 

0.1370 

1.2175 

0.1200 

3.2465 

0.1400 

2.7244 

1.2127 

20 
-0.5058 
0.0489 

1.0022 
0.0507 

3.0022 
0.0507 

2.4391 
0.3825 

30 
-0.5406 

0.0299 

0.9849 

0.0407 

3.9949 

0.0307 

2.1573 

0.2298 

40 
-0.5634 
0.0253 

0.9952 
0.0224 

3.9952 
0.0224 

2.1215 
0.1590 

50 
-0.6013 

0.0181 

0.9954 

0.0184 

3.9954 

0.0184 

2.0865 

0.1252 

60 
-0.6121 

0.0128 

0.9956 

0.0148 

3.9956 

0.0148 

2.0804 

0.0998 

70 
-0.6310 
0.0119 

0.9966 
0.0125 

3.9966 
.0125 

2.0711 
0.0872 

80 
-0.6627 

0.0100 

0.9978 

0.0106 

3.9978 

.0126 

2.0553 

0.0671 

90 
-0.6688 

0.0089 

0.9992 

0.0095 

3.9992 

.0085 

2.0511 

0.0619 

100 
-0.6503 

0.00161 

0.9882 

0.0077 

3.7882 

0.0067 

2.0471 

0.0445 
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From Table 2, it can be clearly observed that as sample size increases the 

mean square error decreases, which proves the consistency of the estimators. 

 

Concluding remarks 
 

There has been a great interest among statisticians and applied researchers in 

constructing flexible lifetime models to facilitate better modeling of survival data. 

Consequently, a significant progress has been made towards the generalization of 

some well-known lifetime models and their successful application to problems in 

several areas. In this paper, we introduce a new transmuted Lindely distribution 

obtained using the new generalization technique. We refer to the new model as the 

NTL distribution and study some of its mathematical and statistical properties. We 

provide the pdf, the cdf and the hazard rate function of the new model, explicit 

expressions for the moments. The model parameters are estimated by maximum 

likelihood and method of moment. The new model is compared with some models 

and provides consistently better fit than other lifetime models. We hope that the 

proposed distribution will serve as an alternative model to other models available 

in the literature.  
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